minieigen documentation

miniEigen is wrapper for a small part of the Eigen library. Refer to its documentation for details. All classes in this module support pickling.

class minieigen.AlignedBox2

Axis-aligned box object in 2d, defined by its minimum and maximum corners

center() → Vector2
clamp((AlignedBox2)arg2) → None
contains((Vector2)arg2) → bool

contains( (AlignedBox2)arg1, (AlignedBox2)arg2) → bool

empty() → bool
extend((Vector2)arg2) → None

extend( (AlignedBox2)arg1, (AlignedBox2)arg2) → None

intersection((AlignedBox2)arg2) → AlignedBox2
max
merged((AlignedBox2)arg2) → AlignedBox2
min
sizes() → Vector2
volume() → float
class minieigen.AlignedBox3

Axis-aligned box object, defined by its minimum and maximum corners

center() → Vector3
clamp((AlignedBox3)arg2) → None
contains((Vector3)arg2) → bool

contains( (AlignedBox3)arg1, (AlignedBox3)arg2) → bool

empty() → bool
extend((Vector3)arg2) → None

extend( (AlignedBox3)arg1, (AlignedBox3)arg2) → None

intersection((AlignedBox3)arg2) → AlignedBox3
max
merged((AlignedBox3)arg2) → AlignedBox3
min
sizes() → Vector3
volume() → float
class minieigen.Matrix3

3x3 float matrix.

Supported operations (m is a Matrix3, f if a float/int, v is a Vector3): -m, m+m, m+=m, m-m, m-=m, m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

Static attributes: Zero, Ones, Identity.

Identity = Matrix3(1,0,0, 0,1,0, 0,0,1)
Ones = Matrix3(1,1,1, 1,1,1, 1,1,1)
Random() → Matrix3 [STATIC]

Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix3(0,0,0, 0,0,0, 0,0,0)
col((int)col) → Vector3

Return column as vector.

cols() → int

Number of columns.

computeUnitaryPositive() → tuple

Compute polar decomposition (unitary matrix U and positive semi-definite symmetric matrix P such that self=U*P).

determinant() → float

Return matrix determinant.

diagonal() → Vector3

Return diagonal as vector.

inverse() → object

Return inverted matrix.

jacobiSVD() → tuple

Compute SVD decomposition of square matrix, retuns (U,S,V) such that self=U*S*V.transpose()

maxAbsCoeff() → float

Maximum absolute value over all elements.

norm() → float

Euclidean norm.

normalize() → None

Normalize this object in-place.

normalized() → Matrix3

Return normalized copy of this object

polarDecomposition() → tuple

Alias for computeUnitaryPositive.

pruned([(float)absTol=1e-06]) → Matrix3

Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((int)row) → Vector3

Return row as vector.

rows() → int

Number of rows.

selfAdjointEigenDecomposition() → tuple

Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals). eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3 with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

spectralDecomposition() → tuple

Alias for selfAdjointEigenDecomposition.

squaredNorm() → float

Square of the Euclidean norm.

sum() → float

Sum of all elements.

svd() → tuple

Alias for jacobiSVD.

trace() → float

Return sum of diagonal elements.

transpose() → Matrix3

Return transposed matrix.

class minieigen.Matrix3c

/TODO/

Identity = Matrix3c(1,0,0, 0,1,0, 0,0,1)
Ones = Matrix3c(1,1,1, 1,1,1, 1,1,1)
Random() → Matrix3c [STATIC]

Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix3c(0,0,0, 0,0,0, 0,0,0)
col((int)col) → Vector3c

Return column as vector.

cols() → int

Number of columns.

determinant() → complex

Return matrix determinant.

diagonal() → Vector3c

Return diagonal as vector.

inverse() → object

Return inverted matrix.

maxAbsCoeff() → complex

Maximum absolute value over all elements.

norm() → float

Euclidean norm.

normalize() → None

Normalize this object in-place.

normalized() → Matrix3c

Return normalized copy of this object

pruned([(float)absTol=1e-06]) → Matrix3c

Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((int)row) → Vector3c

Return row as vector.

rows() → int

Number of rows.

squaredNorm() → float

Square of the Euclidean norm.

sum() → complex

Sum of all elements.

trace() → complex

Return sum of diagonal elements.

transpose() → Matrix3c

Return transposed matrix.

class minieigen.Matrix6

6x6 float matrix. Constructed from 4 3x3 sub-matrices, from 6xVector6 (rows).

Supported operations (m is a Matrix6, f if a float/int, v is a Vector6): -m, m+m, m+=m, m-m, m-=m, m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

Static attributes: Zero, Ones, Identity.

Identity = Matrix6( ( 1, 0, 0, 0, 0, 0), ( 0, 1, 0, 0, 0, 0), ( 0, 0, 1, 0, 0, 0), ( 0, 0, 0, 1, 0, 0), ( 0, 0, 0, 0, 1, 0), ( 0, 0, 0, 0, 0, 1) )
Ones = Matrix6( ( 1, 1, 1, 1, 1, 1), ( 1, 1, 1, 1, 1, 1), ( 1, 1, 1, 1, 1, 1), ( 1, 1, 1, 1, 1, 1), ( 1, 1, 1, 1, 1, 1), ( 1, 1, 1, 1, 1, 1) )
Random() → Matrix6 [STATIC]

Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix6( ( 0, 0, 0, 0, 0, 0), ( 0, 0, 0, 0, 0, 0), ( 0, 0, 0, 0, 0, 0), ( 0, 0, 0, 0, 0, 0), ( 0, 0, 0, 0, 0, 0), ( 0, 0, 0, 0, 0, 0) )
col((int)col) → Vector6

Return column as vector.

cols() → int

Number of columns.

computeUnitaryPositive() → tuple

Compute polar decomposition (unitary matrix U and positive semi-definite symmetric matrix P such that self=U*P).

determinant() → float

Return matrix determinant.

diagonal() → Vector6

Return diagonal as vector.

inverse() → object

Return inverted matrix.

jacobiSVD() → tuple

Compute SVD decomposition of square matrix, retuns (U,S,V) such that self=U*S*V.transpose()

ll() → Matrix3

Return lower-left 3x3 block

lr() → Matrix3

Return lower-right 3x3 block

maxAbsCoeff() → float

Maximum absolute value over all elements.

norm() → float

Euclidean norm.

normalize() → None

Normalize this object in-place.

normalized() → Matrix6

Return normalized copy of this object

polarDecomposition() → tuple

Alias for computeUnitaryPositive.

pruned([(float)absTol=1e-06]) → Matrix6

Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((int)row) → Vector6

Return row as vector.

rows() → int

Number of rows.

selfAdjointEigenDecomposition() → tuple

Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals). eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3 with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

spectralDecomposition() → tuple

Alias for selfAdjointEigenDecomposition.

squaredNorm() → float

Square of the Euclidean norm.

sum() → float

Sum of all elements.

svd() → tuple

Alias for jacobiSVD.

trace() → float

Return sum of diagonal elements.

transpose() → Matrix6

Return transposed matrix.

ul() → Matrix3

Return upper-left 3x3 block

ur() → Matrix3

Return upper-right 3x3 block

class minieigen.Matrix6c

/TODO/

Identity = Matrix6c( ( 1, 0, 0, 0, 0, 0), ( 0, 1, 0, 0, 0, 0), ( 0, 0, 1, 0, 0, 0), ( 0, 0, 0, 1, 0, 0), ( 0, 0, 0, 0, 1, 0), ( 0, 0, 0, 0, 0, 1) )
Ones = Matrix6c( ( 1, 1, 1, 1, 1, 1), ( 1, 1, 1, 1, 1, 1), ( 1, 1, 1, 1, 1, 1), ( 1, 1, 1, 1, 1, 1), ( 1, 1, 1, 1, 1, 1), ( 1, 1, 1, 1, 1, 1) )
Random() → Matrix6c [STATIC]

Return an object where all elements are randomly set to values between 0 and 1.

Zero = Matrix6c( ( 0, 0, 0, 0, 0, 0), ( 0, 0, 0, 0, 0, 0), ( 0, 0, 0, 0, 0, 0), ( 0, 0, 0, 0, 0, 0), ( 0, 0, 0, 0, 0, 0), ( 0, 0, 0, 0, 0, 0) )
col((int)col) → Vector6c

Return column as vector.

cols() → int

Number of columns.

determinant() → complex

Return matrix determinant.

diagonal() → Vector6c

Return diagonal as vector.

inverse() → object

Return inverted matrix.

ll() → Matrix3c

Return lower-left 3x3 block

lr() → Matrix3c

Return lower-right 3x3 block

maxAbsCoeff() → complex

Maximum absolute value over all elements.

norm() → float

Euclidean norm.

normalize() → None

Normalize this object in-place.

normalized() → Matrix6c

Return normalized copy of this object

pruned([(float)absTol=1e-06]) → Matrix6c

Zero all elements which are greater than absTol. Negative zeros are not pruned.

row((int)row) → Vector6c

Return row as vector.

rows() → int

Number of rows.

squaredNorm() → float

Square of the Euclidean norm.

sum() → complex

Sum of all elements.

trace() → complex

Return sum of diagonal elements.

transpose() → Matrix6c

Return transposed matrix.

ul() → Matrix3c

Return upper-left 3x3 block

ur() → Matrix3c

Return upper-right 3x3 block

class minieigen.MatrixX

XxX (dynamic-sized) float matrix. Constructed from list of rows (as VectorX).

Supported operations (m is a MatrixX, f if a float/int, v is a VectorX): -m, m+m, m+=m, m-m, m-=m, m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.

Identity((int)arg1, (int)rank) → MatrixX [STATIC]

Create identity matrix with given rank (square).

Ones((int)rows, (int)cols) → MatrixX [STATIC]

Create matrix of given dimensions where all elements are set to 1.

Random((int)rows, (int)cols) → MatrixX [STATIC]

Create matrix with given dimensions where all elements are set to number between 0 and 1 (uniformly-distributed).

Zero((int)rows, (int)cols) → MatrixX [STATIC]

Create zero matrix of given dimensions

col((int)col) → VectorX

Return column as vector.

cols() → int

Number of columns.

computeUnitaryPositive() → tuple

Compute polar decomposition (unitary matrix U and positive semi-definite symmetric matrix P such that self=U*P).

determinant() → float

Return matrix determinant.

diagonal() → VectorX

Return diagonal as vector.

inverse() → object

Return inverted matrix.

jacobiSVD() → tuple

Compute SVD decomposition of square matrix, retuns (U,S,V) such that self=U*S*V.transpose()

maxAbsCoeff() → float

Maximum absolute value over all elements.

norm() → float

Euclidean norm.

normalize() → None

Normalize this object in-place.

normalized() → MatrixX

Return normalized copy of this object

polarDecomposition() → tuple

Alias for computeUnitaryPositive.

pruned([(float)absTol=1e-06]) → MatrixX

Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((int)rows, (int)cols) → None

Change size of the matrix, keep values of elements which exist in the new matrix

row((int)row) → VectorX

Return row as vector.

rows() → int

Number of rows.

selfAdjointEigenDecomposition() → tuple

Compute eigen (spectral) decomposition of symmetric matrix, returns (eigVecs,eigVals). eigVecs is orthogonal Matrix3 with columns ar normalized eigenvectors, eigVals is Vector3 with corresponding eigenvalues. self=eigVecs*diag(eigVals)*eigVecs.transpose().

spectralDecomposition() → tuple

Alias for selfAdjointEigenDecomposition.

squaredNorm() → float

Square of the Euclidean norm.

sum() → float

Sum of all elements.

svd() → tuple

Alias for jacobiSVD.

trace() → float

Return sum of diagonal elements.

transpose() → MatrixX

Return transposed matrix.

class minieigen.MatrixXc

/TODO/

Identity((int)arg1, (int)rank) → MatrixXc [STATIC]

Create identity matrix with given rank (square).

Ones((int)rows, (int)cols) → MatrixXc [STATIC]

Create matrix of given dimensions where all elements are set to 1.

Random((int)rows, (int)cols) → MatrixXc [STATIC]

Create matrix with given dimensions where all elements are set to number between 0 and 1 (uniformly-distributed).

Zero((int)rows, (int)cols) → MatrixXc [STATIC]

Create zero matrix of given dimensions

col((int)col) → VectorXc

Return column as vector.

cols() → int

Number of columns.

determinant() → complex

Return matrix determinant.

diagonal() → VectorXc

Return diagonal as vector.

inverse() → object

Return inverted matrix.

maxAbsCoeff() → complex

Maximum absolute value over all elements.

norm() → float

Euclidean norm.

normalize() → None

Normalize this object in-place.

normalized() → MatrixXc

Return normalized copy of this object

pruned([(float)absTol=1e-06]) → MatrixXc

Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((int)rows, (int)cols) → None

Change size of the matrix, keep values of elements which exist in the new matrix

row((int)row) → VectorXc

Return row as vector.

rows() → int

Number of rows.

squaredNorm() → float

Square of the Euclidean norm.

sum() → complex

Sum of all elements.

trace() → complex

Return sum of diagonal elements.

transpose() → MatrixXc

Return transposed matrix.

class minieigen.Quaternion

Quaternion representing rotation.

Supported operations (q is a Quaternion, v is a Vector3): q*q (rotation composition), q*=q, q*v (rotating v by q), q==q, q!=q.

Static attributes: Identity.

Identity = Quaternion((1,0,0),0)
Rotate((Vector3)v) → Vector3
conjugate() → Quaternion
inverse() → Quaternion
norm() → float
normalize() → None
normalized() → Quaternion
setFromTwoVectors((Vector3)u, (Vector3)v) → None
toAngleAxis() → tuple
toAxisAngle() → tuple
toRotationMatrix() → Matrix3
toRotationVector() → Vector3
class minieigen.Vector2

3-dimensional float vector.

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, ...) of 2 floats.

Static attributes: Zero, Ones, UnitX, UnitY.

Identity = Vector2(1,0)
Ones = Vector2(1,1)
Random() → Vector2 [STATIC]

Return an object where all elements are randomly set to values between 0 and 1.

Unit((int)arg1) → Vector2 [STATIC]
UnitX = Vector2(1,0)
UnitY = Vector2(0,1)
Zero = Vector2(0,0)
asDiagonal() → object

Return diagonal matrix with this vector on the diagonal.

cols() → int

Number of columns.

dot((Vector2)other) → float

Dot product with other.

maxAbsCoeff() → float

Maximum absolute value over all elements.

norm() → float

Euclidean norm.

normalize() → None

Normalize this object in-place.

normalized() → Vector2

Return normalized copy of this object

outer((Vector2)other) → object

Outer product with other.

pruned([(float)absTol=1e-06]) → Vector2

Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows() → int

Number of rows.

squaredNorm() → float

Square of the Euclidean norm.

sum() → float

Sum of all elements.

class minieigen.Vector2c

/TODO/

Identity = Vector2c(1,0)
Ones = Vector2c(1,1)
Random() → Vector2c [STATIC]

Return an object where all elements are randomly set to values between 0 and 1.

Unit((int)arg1) → Vector2c [STATIC]
UnitX = Vector2c(1,0)
UnitY = Vector2c(0,1)
Zero = Vector2c(0,0)
asDiagonal() → object

Return diagonal matrix with this vector on the diagonal.

cols() → int

Number of columns.

dot((Vector2c)other) → complex

Dot product with other.

maxAbsCoeff() → complex

Maximum absolute value over all elements.

norm() → float

Euclidean norm.

normalize() → None

Normalize this object in-place.

normalized() → Vector2c

Return normalized copy of this object

outer((Vector2c)other) → object

Outer product with other.

pruned([(float)absTol=1e-06]) → Vector2c

Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows() → int

Number of rows.

squaredNorm() → float

Square of the Euclidean norm.

sum() → complex

Sum of all elements.

class minieigen.Vector2i

2-dimensional integer vector.

Supported operations (i if an int, v is a Vector2i): -v, v+v, v+=v, v-v, v-=v, v*i, i*v, v*=i, v==v, v!=v.

Implicit conversion from sequence (list, tuple, ...) of 2 integers.

Static attributes: Zero, Ones, UnitX, UnitY.

Identity = Vector2i(1,0)
Ones = Vector2i(1,1)
Random() → Vector2i [STATIC]

Return an object where all elements are randomly set to values between 0 and 1.

Unit((int)arg1) → Vector2i [STATIC]
UnitX = Vector2i(1,0)
UnitY = Vector2i(0,1)
Zero = Vector2i(0,0)
asDiagonal() → object

Return diagonal matrix with this vector on the diagonal.

cols() → int

Number of columns.

dot((Vector2i)other) → int

Dot product with other.

maxAbsCoeff() → int

Maximum absolute value over all elements.

outer((Vector2i)other) → object

Outer product with other.

rows() → int

Number of rows.

sum() → int

Sum of all elements.

class minieigen.Vector3

3-dimensional float vector.

Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f, v/f, v/=f, v==v, v!=v, plus operations with Matrix3 and Quaternion.

Implicit conversion from sequence (list, tuple, ...) of 3 floats.

Static attributes: Zero, Ones, UnitX, UnitY, UnitZ.

Identity = Vector3(1,0,0)
Ones = Vector3(1,1,1)
Random() → Vector3 [STATIC]

Return an object where all elements are randomly set to values between 0 and 1.

Unit((int)arg1) → Vector3 [STATIC]
UnitX = Vector3(1,0,0)
UnitY = Vector3(0,1,0)
UnitZ = Vector3(0,0,1)
Zero = Vector3(0,0,0)
asDiagonal() → Matrix3

Return diagonal matrix with this vector on the diagonal.

cols() → int

Number of columns.

cross((Vector3)arg2) → Vector3
dot((Vector3)other) → float

Dot product with other.

maxAbsCoeff() → float

Maximum absolute value over all elements.

norm() → float

Euclidean norm.

normalize() → None

Normalize this object in-place.

normalized() → Vector3

Return normalized copy of this object

outer((Vector3)other) → Matrix3

Outer product with other.

pruned([(float)absTol=1e-06]) → Vector3

Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows() → int

Number of rows.

squaredNorm() → float

Square of the Euclidean norm.

sum() → float

Sum of all elements.

xy() → Vector2
xz() → Vector2
yx() → Vector2
yz() → Vector2
zx() → Vector2
zy() → Vector2
class minieigen.Vector3c

/TODO/

Identity = Vector3c(1,0,0)
Ones = Vector3c(1,1,1)
Random() → Vector3c [STATIC]

Return an object where all elements are randomly set to values between 0 and 1.

Unit((int)arg1) → Vector3c [STATIC]
UnitX = Vector3c(1,0,0)
UnitY = Vector3c(0,1,0)
UnitZ = Vector3c(0,0,1)
Zero = Vector3c(0,0,0)
asDiagonal() → Matrix3c

Return diagonal matrix with this vector on the diagonal.

cols() → int

Number of columns.

cross((Vector3c)arg2) → Vector3c
dot((Vector3c)other) → complex

Dot product with other.

maxAbsCoeff() → complex

Maximum absolute value over all elements.

norm() → float

Euclidean norm.

normalize() → None

Normalize this object in-place.

normalized() → Vector3c

Return normalized copy of this object

outer((Vector3c)other) → Matrix3c

Outer product with other.

pruned([(float)absTol=1e-06]) → Vector3c

Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows() → int

Number of rows.

squaredNorm() → float

Square of the Euclidean norm.

sum() → complex

Sum of all elements.

xy() → Vector2c
xz() → Vector2c
yx() → Vector2c
yz() → Vector2c
zx() → Vector2c
zy() → Vector2c
class minieigen.Vector3i

3-dimensional integer vector.

Supported operations (i if an int, v is a Vector3i): -v, v+v, v+=v, v-v, v-=v, v*i, i*v, v*=i, v==v, v!=v.

Implicit conversion from sequence (list, tuple, ...) of 3 integers.

Static attributes: Zero, Ones, UnitX, UnitY, UnitZ.

Identity = Vector3i(1,0,0)
Ones = Vector3i(1,1,1)
Random() → Vector3i [STATIC]

Return an object where all elements are randomly set to values between 0 and 1.

Unit((int)arg1) → Vector3i [STATIC]
UnitX = Vector3i(1,0,0)
UnitY = Vector3i(0,1,0)
UnitZ = Vector3i(0,0,1)
Zero = Vector3i(0,0,0)
asDiagonal() → object

Return diagonal matrix with this vector on the diagonal.

cols() → int

Number of columns.

cross((Vector3i)arg2) → Vector3i
dot((Vector3i)other) → int

Dot product with other.

maxAbsCoeff() → int

Maximum absolute value over all elements.

outer((Vector3i)other) → object

Outer product with other.

rows() → int

Number of rows.

sum() → int

Sum of all elements.

xy() → Vector2i
xz() → Vector2i
yx() → Vector2i
yz() → Vector2i
zx() → Vector2i
zy() → Vector2i
class minieigen.Vector6

6-dimensional float vector.

Supported operations (f if a float/int, v is a Vector6): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, ...) of 6 floats.

Static attributes: Zero, Ones.

Identity = Vector6(1,0,0, 0,0,0)
Ones = Vector6(1,1,1, 1,1,1)
Random() → Vector6 [STATIC]

Return an object where all elements are randomly set to values between 0 and 1.

Unit((int)arg1) → Vector6 [STATIC]
Zero = Vector6(0,0,0, 0,0,0)
asDiagonal() → Matrix6

Return diagonal matrix with this vector on the diagonal.

cols() → int

Number of columns.

dot((Vector6)other) → float

Dot product with other.

head() → Vector3
maxAbsCoeff() → float

Maximum absolute value over all elements.

norm() → float

Euclidean norm.

normalize() → None

Normalize this object in-place.

normalized() → Vector6

Return normalized copy of this object

outer((Vector6)other) → Matrix6

Outer product with other.

pruned([(float)absTol=1e-06]) → Vector6

Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows() → int

Number of rows.

squaredNorm() → float

Square of the Euclidean norm.

sum() → float

Sum of all elements.

tail() → Vector3
class minieigen.Vector6c

/TODO/

Identity = Vector6c(1,0,0, 0,0,0)
Ones = Vector6c(1,1,1, 1,1,1)
Random() → Vector6c [STATIC]

Return an object where all elements are randomly set to values between 0 and 1.

Unit((int)arg1) → Vector6c [STATIC]
Zero = Vector6c(0,0,0, 0,0,0)
asDiagonal() → Matrix6c

Return diagonal matrix with this vector on the diagonal.

cols() → int

Number of columns.

dot((Vector6c)other) → complex

Dot product with other.

head() → Vector3c
maxAbsCoeff() → complex

Maximum absolute value over all elements.

norm() → float

Euclidean norm.

normalize() → None

Normalize this object in-place.

normalized() → Vector6c

Return normalized copy of this object

outer((Vector6c)other) → Matrix6c

Outer product with other.

pruned([(float)absTol=1e-06]) → Vector6c

Zero all elements which are greater than absTol. Negative zeros are not pruned.

rows() → int

Number of rows.

squaredNorm() → float

Square of the Euclidean norm.

sum() → complex

Sum of all elements.

tail() → Vector3c
class minieigen.Vector6i

6-dimensional float vector.

Supported operations (f if a float/int, v is a Vector6): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, ...) of 6 floats.

Static attributes: Zero, Ones.

Identity = Vector6i(1,0,0, 0,0,0)
Ones = Vector6i(1,1,1, 1,1,1)
Random() → Vector6i [STATIC]

Return an object where all elements are randomly set to values between 0 and 1.

Unit((int)arg1) → Vector6i [STATIC]
Zero = Vector6i(0,0,0, 0,0,0)
asDiagonal() → object

Return diagonal matrix with this vector on the diagonal.

cols() → int

Number of columns.

dot((Vector6i)other) → int

Dot product with other.

head() → Vector3i
maxAbsCoeff() → int

Maximum absolute value over all elements.

outer((Vector6i)other) → object

Outer product with other.

rows() → int

Number of rows.

sum() → int

Sum of all elements.

tail() → Vector3i
class minieigen.VectorX

Dynamic-sized float vector.

Supported operations (f if a float/int, v is a VectorX): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f, v/f, v/=f, v==v, v!=v.

Implicit conversion from sequence (list, tuple, ...) of X floats.

Ones((int)arg1) → VectorX [STATIC]
Random((int)len) → VectorX [STATIC]

Return vector of given length with all elements set to values between 0 and 1 randomly.

Unit((int)arg1, (int)arg2) → VectorX [STATIC]
Zero((int)arg1) → VectorX [STATIC]
asDiagonal() → MatrixX

Return diagonal matrix with this vector on the diagonal.

cols() → int

Number of columns.

dot((VectorX)other) → float

Dot product with other.

maxAbsCoeff() → float

Maximum absolute value over all elements.

norm() → float

Euclidean norm.

normalize() → None

Normalize this object in-place.

normalized() → VectorX

Return normalized copy of this object

outer((VectorX)other) → MatrixX

Outer product with other.

pruned([(float)absTol=1e-06]) → VectorX

Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((int)arg2) → None
rows() → int

Number of rows.

squaredNorm() → float

Square of the Euclidean norm.

sum() → float

Sum of all elements.

class minieigen.VectorXc

/TODO/

Ones((int)arg1) → VectorXc [STATIC]
Random((int)len) → VectorXc [STATIC]

Return vector of given length with all elements set to values between 0 and 1 randomly.

Unit((int)arg1, (int)arg2) → VectorXc [STATIC]
Zero((int)arg1) → VectorXc [STATIC]
asDiagonal() → MatrixXc

Return diagonal matrix with this vector on the diagonal.

cols() → int

Number of columns.

dot((VectorXc)other) → complex

Dot product with other.

maxAbsCoeff() → complex

Maximum absolute value over all elements.

norm() → float

Euclidean norm.

normalize() → None

Normalize this object in-place.

normalized() → VectorXc

Return normalized copy of this object

outer((VectorXc)other) → MatrixXc

Outer product with other.

pruned([(float)absTol=1e-06]) → VectorXc

Zero all elements which are greater than absTol. Negative zeros are not pruned.

resize((int)arg2) → None
rows() → int

Number of rows.

squaredNorm() → float

Square of the Euclidean norm.

sum() → complex

Sum of all elements.